If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z^2-61=-18
We move all terms to the left:
z^2-61-(-18)=0
We add all the numbers together, and all the variables
z^2-43=0
a = 1; b = 0; c = -43;
Δ = b2-4ac
Δ = 02-4·1·(-43)
Δ = 172
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{172}=\sqrt{4*43}=\sqrt{4}*\sqrt{43}=2\sqrt{43}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{43}}{2*1}=\frac{0-2\sqrt{43}}{2} =-\frac{2\sqrt{43}}{2} =-\sqrt{43} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{43}}{2*1}=\frac{0+2\sqrt{43}}{2} =\frac{2\sqrt{43}}{2} =\sqrt{43} $
| 6^x2-12=36^2x | | k^2=-38 | | 3*0-4y=26 | | 0.73x=1898 | | 0.6m–1.5=4.8 | | -6=5+r | | y^2=51 | | p=0.08+5.50 | | q^2-80=-37 | | -7r+14=34 | | -11=c/3 | | 0.45x=855 | | -9r+15=33 | | x÷11-8=3 | | 2k+21=175 | | 9/4x+5=9/21 | | 43.96=3.14c | | (5x+10)/6=(8x+3)/7 | | 43.96=3.14s | | 0.82x=200 | | 44=-4n | | 7+2b=29 | | (4x-28)+(9x)=180 | | 12h-5=19 | | g^2+46=-35 | | p^2=-5 | | s^2-73=-80 | | v^2+80=0 | | (n+5)(n-1)=0 | | p÷6=8 | | e/8+13=17 | | 27^x-5.9^x-3^x+2+45=0 |